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different from zero. Such coefficients were eliminated 
and others tried. Only those significantly different from 
zero were finally kept. 

III. RESULTS 

The values of the goodness of fit parameter x2 is 
shown in Table I for the Scotti-Wong4 model published 
phases, and for the Yale5 energy-dependent phase analy­
ses YLAM and YRB1. The values for two comparison 
representations are also listed: The corresponding 
polynomial coefficients are shown in Table II. 

Examination of the contributions to x2 from the 

4 A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963). 
6 G. Breit, M. H. Hull, Jr., K. E. Lassila, and K. D. Pyatt, Jr., 

Phys. Rev. 120, 2227 (1960). 

I. INTRODUCTION 

THOUGH the capture of the TT~ meson from rest 
by deuterons was used 13 years ago1'2 to deter­

mine that the pion was a pseudoscalar, little experi­
mental or theoretical work since has developed on the 
capture from rest by more complex nuclei. More 
recently, interest has developed experimentally3-5 on 
such processes and for the first time experiments are 
being done using counters5 rather than emulsion or 
cloud chamber techniques. Experimental data are 
sparse and for the most part, with a few exceptions,6-7 

1 W. Panofsky, R. L. Aamodt, and J. Hadley, Phys. Rev. 81, 
565 (1951). 

2 K. Brueckner, R. Serber, and K. Watson, Phys. Rev. 81, 575 
(1951). 

3 P. Ammiraju and L. D. Lederman, Nuovo Cimento 4, 281 
(1956). 

4 M. Schiff, R. H. Hildebrand, and C. Giese, Phys. Rev. 122, 
265 (1961). 

6 S. Ozaki, R. Weinstein, G. Glass, E. Loh, L. Neimalu, and A. 
Wattenberg, Phys. Rev. Letters 4, 533 (1960). 

6 S. G. Eckstein, Phys. Rev. 129, 413 (1963). 
7 P. Ammiraju and S. N. Biswas, Nuovo Cimento 17, 726 

(1960). 

individual data points revealed that the single datum 
(10.2°) at 98 MeV contributed 421 to x

2 for CR(21). 
The five lowest-angle cross section points at 98 MeV 
(including the 10.2° point) contributed a total of 548. 
It is to be strongly recommended that these data and 
their associated experimental standard deviations be 
re-examined. 

It would appear that the Scotti-Wong model, as 
represented by the published phases, is rather poor if 
judged as a phenomenological model against CR(10). 
Quite different criteria should be applied, of course, 
if the Scotti-Wong model is judged theoretically. 

The computations reported here were carried out 
in the Computation Center of the Pennsylvania State 
University and the Atomic Energy Commission Com­
putation Center at New York University. 

theoretical calculations of the various modes of capture8 

are nonexistent. 
In the early theoretical work of Brueckner, Serber, 

and Watson2*9 calculations were made of x~ capture on 
complex nuclei by means of extrapolating the deuterium 
capture in an obvious way by saying that 

(l/Z)a£T-+A -* star]= IV[>-+Z> -> 2»], (1) 

where the left-hand side of this expression contains the 
cross section a for absorption on a nucleus of number A 
and the right-hand side contains a factor T which 
allows in a vague way for the effect of the remaining 
(A —2) nucleons on the capturing pair. Since no 
analytic expression for the pion-nucleon interaction 
existed at the time of their work, it was necessary to 
calculate cr[r~~+A —> star] by means of a phenomeno­
logical i£-matrix approach with a partial closure 
approximation. 

This calculation suffered the additional disadvantage 

8 By if capture we shall always mean capture from rest unless 
specifically stated otherwise. 

9 K. Brueckner, R. Serber, and K. Watson/Phys. Rev. 84, 258 
(1951). 
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that plane-wave final states were used for the ejected 
nucleons. As we shall see later, this can be a very poor 
approximation. Also, since the pion-nucleon interaction 
is strongly spin and momentum-dependent which 
Brueckner et al. did not allow for, the value of their 
calculation is limited. As they considered only the case 
of two ejected nucleons, their work leaves other 
questions unanswered about competing modes. 

In a recent work, Eckstein6 has calculated various 
possible branching ratios for the modes of He4 capture 
of 7r_,s. Though he finds agreement with one of two 
experiments done on this nucleus, his calculation is 
unsatisfactory from several points of view. He puts a 
delta-function potential into the pion-nucleon inter­
action in an ad hoc way and also uses plane-wave final 
states. His interaction is not a simple sum of one-body 
operators, but a much more complicated one. Though 
the answers obtained in his paper are reasonable, it is 
not possible to see the physical meaning of his assump­
tions. As no absolute transition rates for these processes 
have been measured, it is not possible to check Eck­
stein's numbers directly, only the ratios of any two. 

I t has recently been suggested by Erikson10 on the 
basis of simple arguments, which we discuss later, that 
the ejection of a single neutron by means of T~ capture 
is highly unlikely and that two-nucleon ejection will be 
a strongly preferred process. In our paper, we will show 
that most probably this conclusion is false. Moreover, 
we will elucidate other gross features of capture on 
complex nuclei. 

For calculational purposes we will treat the case of 
O16 since its doubly closed shell structure is particularly 
amenable to theoretical investigation. Experimentally, 
it is feasible to work with this nucleus as well. I t will 
be obviously clear that the features we will illuminate 
are not dependent on the particular structure of O16 

but should Tiold in general for nuclei in this region. 
There are of course other features which will vary from 
nucleus to nucleus. 

In what follows we will be concerned primarily with 
the calculation and comparison of one- and two-nucleon 
ejection—to be defined more clearly later—but a word 
is in order about the experimental evidence for such 
processes. 

Much of the earlier cloud chamber work dealt with 
capture in flight at pion energies ranging from 15 to 
300 MeV. Though we might expect w~ and ir+ to be 
involved in similar capture processes,11 it has been 
observed12 that the capture cross section increases with 
energy in the low-energy range, and it is thus probable 
that it is unfair to extrapolate these experiments to 
capture at rest. Particularly, since 15 MeV is of the 
order of the separation energy of one nucleon from a 

10 T. Erikson (private communication). 
11 This is not strictly true since single-particle energies and pair 

correlations depend on whether the particles involved are protons 
or neutrons. 

12 F. H. Tenney and J. Tinlot, Phys. Rev. 92, 974 (1953). 

nucleus we must be careful as the whole mechanism of 
capture could be different at rest than at low energies. 
Also the momentum of a 15-MeV pion is very different 
from the momentum of a pion at rest. In any event, 
pair ejection is found to be quite common in these cases. 

In a 7T~ capture experiment done by Azimov et al.,u 

neutrons were not detected and therefore it is impos­
sible to judge how often we get one neutron ejected 
compared to a pair ejected. In two experiments, one by 
Ammiraju and Lederman3 and the other by Schiff et al.,4 

a strong disagreement is found about the comparative 
rate of the process He4+x-—> W-\-n. Ammiraju gives 
a value of approximately 1% of all captures, while 
Schiff finds 30% which Eckstein's calculations tend to 
support. Ammiraju and his co-workers argue in their 
paper for a predominance of a two-nucleon ejection 
though they (as well as Schiff) find many cases of 
ejection of more than two particles, referred to in the 
literature as multipronged stars. 

I t is very important to distinguish here whether the 
fragments that fly out after w~ capture are due to 
simultaneous ejection of many particles and fragments 
due to collisions by the absorbing proton, or whether 
one or two nucleons are ejected and then the highly 
excited daughter nucleus "boils off" these fragments 
and descends to some stable state. 

Ammiraju et al. attempt to answer this question on 
the basis of angular correlations of the many outgoing 
particles, and they feel that many of the multiple 
processes are not the result of "boil-off." But their 
statistics are poor, their correlation measurements not 
precise, and their experiment is, in part, in complete 
disagreement with both theory and another experiment. 

I t is obviously true if one or two nucleons are removed 
from, say, the s shell of O16, then the remaining nucleus 
will be highly excited and will decay either by gammas 
or by "boil-off" to something stable. Thus, the experi­
mental measurements of multiparticle ejections are 
completely compatable with the one- or two-nucleon 
ejection process. Multibreakup, directly as a result of 
7r~ capture, is physically different from "boil-off" and 
can be distinguished not only by the correlations as 
discussed by Ammiraju, but also by the absence of one 
or two nucleons of specified energies (always present 
if the process is a "boil-off"). Clearly much experi­
mental work must be done here. 

II. ONE-NUCLEON EJECTION 

The terms "one-nucleon capture model" and "two-
nucleon capture model" have been used loosely in the 
literature. Sometimes the latter term is taken to mean 
the ejection of two nucleons from a nucleus due to the 
capture of a ir~. At other times it is taken to mean that 
the two nucleons do the capturing of the pion though 

13 S. A. Azimov, U. G. Guliamov, E. A. Zamchalova, M. 
Nizametdinova, M. Podgoretski, and A. Iuldashev, Zh. Eksperim. 
i Teor. Fiz. 31, 756 (1956) [English transl: Soviet Phys.—JETP 
4, 632 (1957)]. 
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what this means is not well defined. The second meaning 
is often linked to the first in the assumption that two 
nucleon ejections can only be achieved by means of 
two-nucleon capture which is, of course, untrue. We 
will use an interaction that can be written as a sum of 
single-particle (nucleon) operators (in contrast to the 
operator of Eckstein), and with this operator we will 
calculate one-nucleon ejection and two-nucleon ejection, 
meaning one and two nucleons leaving in unbound 
states from a daughter nucleus. 

The matrix element for one nucleon ejection is given 
by M= (ypf\Hi\\f/i) where \j/i and \f/f are the initial and 
final states and Hi is the interaction given in Eq. (7). 
We can easily find that the number of transitions per 
second for one ejected particle between the energies W 
and W+dW and with angles between 12 and ti+dtt is 

Thus we take 

N'(Wfl)dWda= (2w/¥)P(k)p(A)dA\M\2 

N(W)dW= \jnim/(2T)2h*lp(A)dA ( dtt\M|2, 
• / -

(2) 

where k is the momentum of the outgoing nucleon with 
p(k) its density of final states, D is a normalization 
volume which will disappear in our final result, and 
^(A) is the excitation spectrum of the final nucleus 
where A is the energy of that nucleus above the cap­
turing state of the initial nucleus. For example, in the 
case that a one-hole state is a sharp level in the resultant 
nucleus we would have p(A) = 8(A—E), where E is the 
experimentally determined energy of that level above 
the initial nuclear state; i.e., E is a separation energy 
of one nucleon. We have from the conservation of 
energy that14 

fxc2=A+h2k2/2m= 139.2 MeV 

if we neglect the recoil of the final nucleus which is not 
serious for A = 16. 

To evaluate 
M=tyt\Hz\M (3) 

we take \pf as a plane wave for any ejected nucleon 
times a nuclear wave function for a first approximation. 
For \f/i we will take a one-pion state, and we make the 
further approximation that the wave function can be 
written as the product of the wave function for N 
nucleons times a Is atomic Bohr orbit wave function 
for the pion.15 

14 We neglect this small Coulomb energy of the x. 
15 In Ref. 9 it is shown that this is indeed the capture orbit for 

capture on deuterons since the radiative transition nl —> Is 
dominates over capture from nl. As can be seen from (9) where 
<px(0) appears, capture from nl will rise as ZsZ2l(roAll3/a0)

21 while 
radiative transitions nl —> ms go as Z6[(l/w2) — (l/m2)]3(wm)3/2Z~2 

=Z4[(w2-m2)V(^w)9/2]. Since Z(rQA^/a0)<l for all physical Z, 
the transition nl —•> ms is preferred over capture from nl even more 
strongly as Z increases. Similarly, it is easy to see that nl —> ms 
is most rapid for m — \. Lastly, as the chances of getting caught 
in an 5 orbit for a given n is roughly n~2 and since capture goes, 
from (9), as n~3, we can see that n — \ dominates n = 2 by 32 to 1 
and so on. See, however, the discussion by G. A. Snow in the 

*<=*(#) *>,(r), (4) 

where r is the pion coordinate. This is a fundamental 
step in the calculation as we have neglected the effect 
of Hi on both \(/(N) where it could radically alter the 
nuclear state, and on <pT(r). Brueckner16 has investi­
gated the effect of Hi on the one-pion Coulomb wave 
function and shown that, for Z=&, the level shift and 
level broadening of this state are not serious. 

For our problem the interaction Hamiltonian density 
is given by 

Wi=iG^y&<p-T. (5) 

As is well known,17 we may re-express this term in a 
nonrelativistic form 

iG 

2mc 
(6) 

with or given by the Pauli matrices and p r is the pion 
momentum operator. As (6) does not preserve Galilean 
invariance we must add a term to get 

iGfi 
3C/« ^ W " (yT—VJVOP-T. 

2mc 
(V) 

Thus (3) becomes 

M=£- 8 / 2 / ^ (^ ' - l ) e* • , 
iGfi 

2mc 

X ^ W ^ ( r ) ^ , (8) 

where we have already taken the field theoretic matrix 
elements leaving (8) as an ordinary matrix element 
and we have specialized to TT capture. 

If we choose the origin of our coordinate system in 
(8) as the center of the charge Ze that gives rise to 
^ ( r ) , then it is clear that the vr term will be very 
nearly zero over the entire extent of the nucleus. Doing 
this we have 

M*=-
GfxM <pr(0) 

2mc2 W2 

X(X^eik^^jM(N-l)\arVirr\HN)), (9) 

where the initial and final states are completely anti­
symmetric in all nucleons and f stands for the final 
quantum numbers which are the magnetic spin quantum 

Proceedings of the 1960 Annual International Conference on High 
Energy Physics at Rochester (Interscience Publishers, Inc., New 
York, 1960), p. 407, on the mechanism of iT-meson capture. 

16 K. Brueckner, Phys. Rev. 98, 769 (1955). 
17 F. Mandl, Introduction to Quantum Field Theory (Interscience 

Publishers, Inc., New York, 1959). 
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number sz, the spin / of the final nucleus, and its 
magnetic number M. 

To evaluate (9) we assume that a given final state 
corresponds to a hole in a j shell. Due to the high 
momentum of the outgoing particle we neglect the 
antisymmetry of this particle with the nucleons in the 
residual nucleus, and after some tedious algebra we 
can write 

Mt=AIr*i*Z2j+lJi* 

X(xSge^'^jM(2j)\^Vir1~\M2j+l)), (10) 
with 

A= (Gph/2m(?)<pr(0)=1.6OZ'**X10rn, 

where we have taken18 

G2= 16ir(tn/}x)2hcf2, f= 0.08. 

The left-hand side of (10) is no longer antisymmetric 
in r! and the wave functions \f/0(2j+l) and \j/jM{2j) 
represent a closed shell and a closed shell less one 
particle, respectively. 

Since 

^ o ( 2 i + l ) = Zm (jjm-m\Q0)^{2j)^rm{ti), 

we must have J=j, M=-\-m and 

L l ^ r l 2 = E \(xs*eik"\<r-v\trm(r))|2 

sg,m 

X(lW-M-fn'\j-M) 

X(il-M-m sz+M+m\ lsa) 

X(hl-M~mf s9+M+tn'\ls8) 

X(eik'T\V-~m-M-s*\\f<im(r)) 

X (eik -r | V~™'~M-S*1W (r)>. (11) 

We use 

lm 

and19 

<F^ ' (O r ) / ( f ) |V |F ,«(O r )g(r )> 

/ /; i i\/r i /v1 

= (-iH / )( ) 
\-mf ix m/\0 0 0 / 

X<F^(O r)/(r)|Vo|F,o(O r)g(f)>, (12a) 

where the matrix element on the right-hand side of 

18 To make the dimensions of A correct we have included im­
plicitly an extra factor (k//nc)2(fxc2) due to the fact that the field 
theoretic pion field defined in (5) has a different normalization 
than the wave function used in (8). 

19 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1960), 2nd 
ed., p. 80. 

(12a) is given by 

(f(r)Yl,°\V»\Yl°g(r)) 

H - l 

[(2/+l)(2/+3)]1'2 </(') \g(r)): 
\ \dr r\ / 

/' = /+! (12b) 
I d 7+11 

[ (2 / -1X2H-1) ] 1 

= 0, l' = l. 

Thus 

-<f(r)\-+—\g(r)) 
2 \ \dr r \ f 

/ ' = / - ! 

/ 
^EI^rl2=6(4x)2(2i+l)EL (2Z+1) 

x(i/oo|zo)-
* I 

1 / 
|<Z|V»| (13) 

with (L\ V°|Z> defined by (12b) where f(r) = jL(kr) and 
g(r) = <£zM> the radial part of an / shell-wave function 
which will be either Is or \p in O16. 

Making use of the general formula20 

/2&\ 1 / 2 r00 

u i, j-< (kr)rfi~h-p2r2dr= 
T(n/2+ix/2)kn 

(14) 

2n+1pn+»T(n+l) 

4p2. 

where 1F1 is the confluent hypergeometric function 
regular at the origin, we can readily evaluate (13). 
Doing so we have 

/n ix k2\ 
XtrW&iFjl + 1 ; » + 1 ; — ) , 

\2 2 U2/ 

/ 
dQk £ j MK12 = 396(k2/y*/2)e~k2l2y, / = 0 

(15) 
= 440(&4/75/2)e-*2/2?, J= 1, y = f 

- 1 3 2 ( ^ / 7
5 / 2 ) e - ^ ^ , 1=1, j=%, 

where our harmonic-oscillator wave functions are the 
usual ones and have an exponential form oc e~yr2. For 
purposes of numerical investigation we assume p(A) 
in (2) is very peaked at some k so that it acts like a 
delta function and the integral over p(A)dA gives unity. 
This is a good approximation for the p shell in O16 and 
somewhat less good for the s shell. Then for Z= 8, 

-J T= / N(W)dW= 18.8(&/'fl2)<r#/2'*X 1018, 1= 0 

==20.9(^5/75 /2)^2 /2^Xl018 , 

i 

= 6.29(^5/75/2)e-fc2/2^X 1018, 

(16) 

20 G. N. Watson, 4̂ Treatise on the Theory of Bessel Functions 
(Cambridge University Press, New York, 1944), 2nd ed., Chap. 
XIII. 
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Finally, we take21 7=0.178 f~2 and for the value of k 
we have 

4=2.19 / - 1 (40MeV) s1/2 

k=2A2f-1 (18MeV) £3/2 

k=2A9f~l (11.13 MeV) p1/t. 

The energy in brackets after each k gives the corre­
sponding separation energy assumed for a proton in 
the specified state. These values of energy are taken 
from Pugh and Riley.22 

We have 

T = 3.65 X1015 sec"1 s1/2, 

r=9 .31X10 1 5 sec - 1 pm, (17) 

T=1.23X101 5sec-1 p1/2l 

rTotai=1.42X1018sec-1 

and we see that the k dependence has reduced Thy 
several orders of magnitude from the maximum value 
obtainable in (16). This is not surprising since we are 
seeking out the high-momentum components of the 
shell-model wave functions and these are small. 

III. EFFECT OF A DISTORTED WAVE 

If we assume a complex nuclear well of the form 

V(r)=-iVoe^r\ (18) 

then Squires23 has shown that an outgoing distorted 
wave of momentum k and energy E can be written as 

ik-T+iS 

ikV0 
S=-

IE J (x,y,z) 

(19) 

where the path of integration is along k. This can be 
written as 

S=-
ikVo 

6 
IE 

V 

J r\ 
e-^dt (20) 

cos^»| 

with cos<p=k«r/&r. I t should be noted that 6— <p (0 is 
the azimuthal angle of r) only when k is along the 0 axis. 

If we expand x~ m a series of spherical harmonics as 
was done with eik'T we will have coefficients that are 
not simply spherical Bessel functions but rather 
integrals like 

hi(r)= f fdaAlke^'^iaYi^(Qr)Yr(Qk). (21) 

Since (21) is a double integral over the angles of k 
and r, we will replace, in S, sinV by f and | cos<p\ by ^, 

21 S. Iwao, thesis, University of Rochester, 1960 (unpublished). 
22 H. G. Pugh and K. F. Riley, in Proceedings of the Rutherford 

Jubilee International Conference (Heywood and Company, Ltd., 
London, 1960), p. 195. 

23 E. J. Squires, Nucl. Phys. 6, 504 (1958). 

which are the average values of these functions over a 
sphere. Then instead of ji(kr) we have 

ht(kr) = Anrilji(kr)eiS', 

ikVo 
S' = -

2E 

-IP* J 
J \r 

-*Ht. (22) 

We can now use Eq. (13) with JL(kr)eiS' in place of 
jh(kr) and instead of using (14) we have done a machine 
integration on the IBM 1620 at the University of 
Rochester. With F 0 = 6 0 MeV and24 0=0.215 /~2 and 
for the same values of k as before we have25 

T=2.74X10 1 6sec- 1 , 

T = 6.65 X1016 sec"1, 

T=4.64X10 1 6sec- 1 , 

T T o t a ^ l ^ O X K F s e c - 1 . 

(23) 

These values are significantly enhanced over the 
values for a plane wave given in (17). 

IV. TWO-NUCLEON EJECTION 

The consideration of the question of two-nucleon 
ejection raises the problems of two-body correlations 
in the initial state and of the nucleon-nucleon inter­
action of the ejected pair in the final state. The radial 
matrix elements that arise can be expressed in terms 
of center-of-mass and relative coordinates, and it is in 
the latter that a correlation function should be used. 
In many respects our calculation is similar to one of 
Reitan26 on quasideuteron production in O16 by 100-
MeV gamma rays. He refers there to the work of 
DeSwart and Marshak27 which indicates that the 
relative coordinate integrals are not sensitive to the 
small r dependence of the wave functions for momenta 
in the region corresponding to 100 MeV. This small r 
region is just that region where a correlation function 
differs most from unity. Explicit calculations by 
Reitan28 using no correlation function give results very 
similar to the numbers, obtained with a correlation 
function, in his published paper. 

I t has been suggested by Brown28 that the same 
conclusions are applicable to the pion capture process 
since the argument against the importance of small r 
behavior is due mainly to questions of momentum 

24 We determine /3 for O16 the same way Squires (Ref. 23) deter­
mined (8 for C12: By making the rms of the potential correspond 
to the Hofstadter value; see R. Hofstadter, Ann. Rev. Nucl. Sci. 
7, 231 (1957). 

25 If we calculate a value for T for He4 using an average enhance­
ment of 10 due to the distorted waves as determined by a com­
parison of (17) and (23), we find r(He4+7r~ -> W+n)«1016 sec"1 

which is an order of magnitude less than Eckstein's value. Of 
course, there is no reason to expect that we should obtain agree­
ment as the two methods of calculation are not equivalent. 

26 Arne Reitan, Nucl. Phys. 36, 56 (1962). 
27 J. J. deSwart and R. E. Marshak, Phys. Rev. I l l , 272 (1958), 
28 Gerry Brown (private communication). 
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transfer. A momentum transfer corresponding to29 50 
MeV gives roughly a Heisenberg uncertainty distance 
of 0.90 / whereas the Compton wavelength of the 
nucleon is 0.21 / . 

We are inclined to accept this argument by Brown 
since our integrals are very similar to those of Reitan, 
and in that case there is numerical evidence in favor of 
this argument. As a result the ensuing integrals are 
much simplified. We leave until later the question of 
the final-state scattering interaction. 

In the two-nucleon case, (2) is replaced by 

= (2T/h)\M\*p(k1)p(k2)dE1dE2 
Xp(A)dAdlnc2-A- (¥/2m) (&i2+&2

2)], (24) 

or if we define k= J(ki—k2), K=ki+k 2 , 

L6m2 

N (W) dW= kKp (A)dAdEK 
(2TT^) 5 

X f fdttkdttK\M\2. (25) 

In (25), A represents the separation energy for two 
particles, but p(A)dA has the same meaning as before. 
We now have, with the wave function of the ejected 
particles given by ^(ri,r2), 

Mt=AN(f(?i,T*)KN-Z)I*i-ViniiKtf)), (26) 

where initial and final states are completely antisym­
metric in all nucleons. If we assume that a definite 
final state corresponds to two j holes coupled to some 
/ and some Mj we can show with some tedious algebra 
that, again neglecting exchange between the ejected 
pair and the final bound nucleons, 

M,=AahJ/({Hh2)Xs^(l,2)XTMT{h2)} 

X^jM/'MT,(N-2)\^Tirr\4f(N))f (27) 

where ^(1,2) represents the spatial wave function of the 
ejected pair, Xs

Ms and XT
MT are the spin and isotopic 

spin functions of the pair, and ^JMJT'MT' is the wave 
function for the (N— 2) particle daughter nucleus with 
indicated quantum numbers. In (27), cr3\j2

J=Z(2ji+l) 
X^Vfl) ] 1 ' 8 if j^j, and *hh

J=U(2J+m}2 if 
ji= J2, both protons. In the case of one proton and one 
neutron, we have 2aj^-/, ji9^J2 and ji= j \ for even / . 
For odd / and ji= j \ we have 2£(j+l)/j']1/2<rj1j2

J. 
We take the complete two-particle wave function 

on the left side of (27) to be antisymmetric in the pair 
but now not antisymmetrized with \p(N—2). We wish 
to know the value of | M{ \2 summed over all final states 
and integrated over all angles of K and k. This is given 

by 

9U2= j dQkdiiK'L\Mt\
i 

= 2ls,Ms 12T,MT 12j,Mj Ef'.-Ml" 

XA\<Tjd/Y f [dQkdQK\{WXsMsXT**T} 

X^ir / ' " p ' | a i -ViTr |*(2V)>|V (28) 
with 

HN)= E <*J"T" E {J"J"Mj"-Mj"\00) 

J"T" MJ"MT" 

X(T"T"MT"-MT"\00)4<j"Mj"(l,2) 

X.XT"MT"{'L,2)tj"T'-Mj"-MT"{l,2), 
where \f'J"

M-'"(l,2)xT.,M^"(l,2) is antisymmetric in 
particles one and two. Here aJT is given by, with j \ 
and j*2 the initial j states of the two nucleons: 

2J+1 
(a,./T)2 = 

ycH-i) 

l r 2J+1 -i 1 4Li(i+i)J 

3r 2J+1 

4L(y+l)(2i+l). 

2J+1 

(2ix+l)(2i2+l) 

2J+1 2T+1 

even / , ji = J2, two 

protons, 

odd / , ji=J2, two 

protons, 

even/, ji = j 2 , 

neutron-proton 

odd/ , yi=y2, 

neutron-proton 

all / , ji9^j2, two 

protons 

all / , T, J!7*j2, 

neutron-proton. 

29 This is approximately the maximum momentum transfer 
available in the two-nucleon ejection process. 

(2j\+l)(2j2+l) 4 

We now have 

9J12 = 4^2 Z I (*TMT I rr | XT -*T>) ] 2 f fdQkdttK 

Xl(^( l ,2)X^I(T J .ViI^-^( l ,2) ) I 2 , (29) 

where \f/j~Mj (1,2) is symmetric or antisymmetric de­
pending on X T - M T ' . The 4 in (29) comes from the fact 
that we no longer antisymmetrize the final state. As 

{XTMT\TI~\XT~M^) 

- ( - l )^ r v5[ (2r+1) (2V + l ) ] 1 ' 2 

2 2 J- I 
X{TVMT-MTf\l-\)\2 

li r \ 
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and since we can sum over the indices T, Mr and MT 
in (29) we have 

9Tl2 = 4^2 L Z H(2T'+1)[ [dttkdSlK 
8,Ms J,Mj T' J J 

X l ^ C r ^ X ^ l a r C v . + i V ^ I ^ - ^ C r i ^ ) ) ! 2 , (30) 

where r=ri—r2 and R=|(ri+x*2). 
Using 

^ - M ' ( r i , r 2 ) = £ E (LS'MiMs'V-Mj) 
LS' ML 

X C(2L+1) (2S'+1) (2 j x+1) (2j,+l)]1 '2 

X 2 2 ^^(ri . rOXa.^ 'Cl.Z) 

we can evaluate the spin matrix element in (30) 
yielding 

3E2 = 8 ^ E E E ( 2 r + l ) ( 2 5 + l ) 
S,21fs J ' . M ^ T' 

X / dakdQK E E (2L+1)"*(2S"+1) 
i,M"z, S'.Ms' 

X(LS'MLMs'\J-Mj) 

X(SS'MS-MS'\1MS-MS') 

l \ 1% L> 

X l i e " 
2 2 ° 

Xf(-Ms+MS',ML,L) (3D 

with 

by Talmi.30 We note the important fact that if two-
harmonic oscillator radial wave functions have an 
exponential dependence <p{r^)^e~yrl2 and similarly for 
r2 then we will have <p(r) <* e~^r2 and <p(R) <* e~2yB\ 

We take eiK'R for the R coordinate wave function, 
as does Reitan, but for the relative coordinate the 
problem is more difficult. DeSwart and Marshak27 have 
shown that the asymptotic radial form 

<j)i(r) = ^7rilei8llcos8lji(kr)-smdir]l(kr)'] (33) 

will give good results in such integrals as ours for 
energies around 100 MeV. It is not always necessary 
to truncate the Neumann function since there may be 
enough powers of r at the origin in the integral to 
compensate for the ill behavior of y]i(kr)^r~l~l. This 
is the case in our problem. If we want the effect of a 
plane wave we take 

<t>i{r) = ^Trilji{kr). 

We record here the matrix elements we will need as 

f(-Ms+Ms',ML,L) 

^(HrM^r+^E)~Ms+Ms,\^LML(rhr2)) 

where again the symmetry properties of \1/LML(T 1,^2) 
depend on those of X8>

M'S and tyrMj. 
We can convert \f/LML(rhr2) to a function of r and R 

to get 

fi-Ma+Ma', ML, L) 

= £ E {lil&uML-m\LML) 

mi l',l",mi' 

XAin"
hh(mi',ML—mi') 

X(HrM^r+^E)-Ms+Ms'\ 

X^'ml '(r)^"KL-OT! '(R)>, (32) 

where the coefficients Avv>
l^(m{, ML—ml) are given 

Jo 
X / RHRjv,{KR)<pv,(R) 

</K.R| VsO|^»(R)> = / — ) KY£(pK) 
. 3 / 

(34) 
X<eiK-R|^<°(R)>, 

<*(r) I*P°(r)>= Yv°(Qk) I rHr4,v*(r)Vl, (r), 
Jo 

<*« I Vro|^°(r)> = <^-i^(r) |*r-i°(r)> 

+<ar+i^(r)|^+i°(r)>, 

where #j'_i and ai>+i are coefficients which are easily 
determined for any specific case. 

V. EVALUATION OF EQ. (31) 

Due to the coefficients Ai>i>>ll(tni, ML—mi) in (32), 
it is not possible to form a closed expression for X) I Af r 12> 
and the enormous effort of evaluating so many terms 
individually is not sufficiently rewarding to justify the 
effort since we are able to determine several features of 
the capture by making some suitable approximations. 
As the radial integrals determine the magnitude as 
well as other features of the process, we make the 
approximation that 

E|Mr|
2=|E(^(r)R)|(v,+|vs)o| 

VI" 

X^°(r )^° (R)> | 2 . (35) 

Dropping the magnetic quantum number dependence 
of the integrals in (31) will obviously not affect either 

> I. Talmi, Helv. Phys. Acta 25, 185 (1952). 
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the order of magnitude nor the angular features (see 
below) of these integrals. Also, since the value of all 
the quantum numbers in the various Clebsch-Gordan 
coefficients, 6-j symbols, and 9-j symbols in (31) is 
small, the approximation of setting each numerical 
coefficient equal to 1/m in an m term sum (giving a 
result of unity) will not affect the final answer very 
much. 

We now investigate the maximum value of 3fl!2 for 
the case of back-to-back (b-b) ejection of two particles 
(K= 0) and show that in general this will be larger than 
parallel (p) ejection (k=0) . 

In order to see what term of the type (35) gives the 
largest effect we need to know that rji(kr) = (— l ) m 

Xj-i(kr) and that an integral over rl+2ni(kr)e~yr2j2 is 
proportional to k~l~~2 for large k. This is immediate 
from (14) and the relation 

iFitoO -> [r(c)/r(a)lev-c+o(z«-°-!) 
as • + 00. 

However integrals containing ji(kr) result in a factor 
e-k

2/2y a n j obviously the largest possible terms will 
come from the smallest possible k. This would be the 
ejection of one s-shell proton and one s-shell neutron 
where the final kinetic energy would be 54.7 MeV or 
k=lA5 / _ 1 since Ek=k2k2/m for relative momentum 
(and EK— h2K2/4m for total momentum). 

With a little computation it is possible to establish 
the following facts: For any k obtainable in this 
problem for back-to-back ejection, except the smallest 
one given above, the integral over ji(kr) is smaller than 
that over rji(kr) for those Ps that appear. For this 
smallest k, however, we find that the integral over 
jo(kr) is larger than that over rj0(kr) which, in turn, is 
larger than rji(kr) for any other I and k arising. This 
leads us to the following dominate expression 

£ | i f r | 2 = K«*K-R|^o°(R)>^.(r)| Vr°|^o°(r)>(2, (36) 

where we retain only the largest term for K ~ 0 . Now 
we have 

I f °° I2 

K e
i K - R |W(R)> | 2 =(4T) | / mRj0(KR)90(R)\ 

u o I (37a) 

while 
= x 8/2 7 -3 /2 e -K2/4r ; 

256 
f fdakdnK|<*(r) | vr°|*0°(r) 1 2=—7T 7V 2^ 20), 

A*(k) = rzdre-'Yr2l2Zcos8iji(kr) — sm8i7j1(kr)'] 

v2 k 3 
e-*2/2?cos5i s n l 5 l 

(37b) 

v/5/2 

-K it* 
« e-kVy 

2 7
5 

where we put cos5i= 1 for a maximum effect. Combining 
(37) with (25) we have for K ~ 0 , 

A2m2 /128T\ 
N(EK)dEK = kKl \y-*k2e-k2ly-K2^dEK 

(lirftY V 3 / 

kzK 
= 12 (rW^&^dEKXW*, 

where k=\[±rnA/h2-K2Ji2 with A-54 .7 MeV. We 
then have as the total transition rate 

Jo 
N{EK)dEK 

^ 0 

= (7.76X 1018) / [ l -5 ] 3 / 2 ^/ 2 e- 1 2 - 9 ^ , 
'o 

S=-
fi2K2 

4mA 

(38) 

This expression for T is actually incorrect since the 
integrand appearing in (38) comes from an analytic 
expression valid only near K = 0 as this was the only 
range in which (33) is considered valid. We can see that 
the integrand in (38) peaks near 5 = 0 ( K « 0 ) which 
means that back-to-back ejection is the dominate 
contribution in this region. If we can show that the 
value of £ |-M||2 for parallel ejection (k=0) will not 
exceed its value for K = 0 , then we may use (38) to 
obtain an estimate of the total transition rate for two-
nucleon ejection. 

To investigate the question of parallel ejection (k= 0), 
it is clear after a little thought that the same expressions 
will appear as we had in (37) and (38) if we replace Vr 

by i^R which will reverse the values of k and K. This 
is permissible only if the expression (33) can be used for 
£ ^ 0 since we have only shown that it is good for large 
k. We show that (33) is acceptable for &~0 as well by 
considering the nucleon-nucleon potential to be a 
square well. 

Consider a square well of depth F 0 = 5 0 MeV and 
range TQ= h/mc which we use to represent the nucleon-
nucleon interaction. If the energy of the system is very 
small Vd2>E> 0, then the wave functions for the system 
are 

fovT=Ai(k)[ji(kr)-ta,n8i(k)r]i(kr)'], 

fi2 fi2V0 

a2=—(E+Vo)~ , 
2m 2m 

(39) 

We consider the integral, where <p(r) is a bound-
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harmonic oscillator wave function, 

m-
pro 

Jo 
(r)r2dr 

+ /• UiW-tiWmWMrydr. (40) 
• / 

Since ar^>l we can neglect the first integral, as the 
oscillation of ji(ar) will cause it to be small, and since 
kro<^l we can replace the lower limit in the second 
integral in (40) by zero then 

kl-ckm 7]i(kr)(pi(r)r2dr /(*)< 

I(k)<x[kl—ckmr-1-1'] (m—I—1)^0, c = constant. 

The condition (m—1~ 1 ) ^ 0 is due to the fact that 
5i(k)r)i(kr) must approach a constant or zero as k —» 0. 
We see that we can hope at best for a contribution from 
the r integral that is of order unity [compared to 
(k/yll2)e~k2/2y for example in (37b)] when k is small. 

Thus we see that for two s-shell particles the parallel 
ejection will be of the order of or less than back-to-back 
ejection. The reason for this is that for such as low 
value of k, the plane-wave term in (33) is actually more 
important than the term due to the nucleon-nucleon 
potential when it comes to back-to-back ejection. 
Hence, parallel ejection will be about the same. How­
ever, this will not be true for ejection of other pairs of 
particles since the interaction term rn(kr) will then be 
more important than the plane-wave term. I t is 
possible with some numerical work to see that, except 
for the one case above, back-to-back ejection will be 
larger than parallel ejection by an order of magnitude 
or more. 

We can see from all the above that the transition 
rate as a function of angle between the two particles 
will fall on going from 180 to 0°, but it will not do so 
monotonically as there are terms in (35) like Kme~K2/Ay 

which do not peak at K = 0 . As the leading parallel 
term is about the size of the leading back-to-back term, 
the total fall of the transition rate with angle should 
not be excessive and probably not exceed a factor of 10. 
Experiment5 indicates a fall of about a factor of 5 from 
180 to 90°. 

Evaluating (38) by putting [1-SJ/2SV2= 1 we have 

r x o t e i ^ ^ & O X l O ^ s e c - 1 . 

This is to be compared with (23). 

VII. CONCLUSION 

We enumerate the points of interest in this paper: 
(1) Single-nucleon ejection is not strongly suppressed 

compared to two-nucleon ejection if the effects of a 
distorted wave are included. 

(2) The transition rate as a function of angle between 
two ejected particles will not monotonically decrease 
from 180 to 0° but will have structure. 

(3) In general, low-lying s particles will enter into 
the capture reaction dominantly and capture is not 
limited to surface effects. 

We have not yet mentioned the question of the 
relative production of two neutrons compared to one 
proton and one neutron. Experimentally5 this ratio is 
about 5. We see that Eq. (29) in principle will determine 
a value for this ratio by not summing over the initial 
and final isotopic magnetic quantum numbers of the 
pair. Of course an exact evaluation of all the terms in 
(29) would be necessary but would probably still not 
give the correct answer. This is because we have 
neglected Coulomb forces as well as the effect of triplet 
versus singlet forces. Both these effects will tend to 
let a neutron and a proton be more closely correlated 
in space than two protons. This question has been 
dealt with elsewhere.31 

Note added in proof. H. L. Anderson, E. P. Hincks, 
C. S. Johnson, C. Rey, and A. M. Segar, Phys. Rev. 
133, B392 (1964), give experimental results for high-
energy neutron ejections (their Table III) which tend 
to support the value of the ratio of our numbers for one-
and two- nucleon ejection. 
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